We use cookies to give you the best experience and to help improve our website

Find out what cookies we use and how to disable them

BS ISO 16659-3 ISO 16659-3 Ventilation systems for nuclear facilities. In-situ efficiency test methods for iodine traps with solid sorbent. Part 3: Cyclohexane gas leakage rate method

Source:
ISO
Committee:
NCE/2 - Radiation protection and measurement
Categories:
Radiation protection | Nuclear power plants. Safety
Comment period start date:
Comment period end date:
Number of comments:
0

Comment by:

Scope

ISO 16659 series provide different test methods aiming at assessing the performances of radioactive iodine traps in ventilation systems of nuclear facilities. This series deals with iodine traps with solid sorbent, mainly activated and impregnated charcoal, the most common solid sorbents used in ventilation systems of nuclear facilities, as well as other sorbents for special conditions (e.g. high temperature zeolites). ISO 16659-1 provides the general requirements to be applied for all methods of the series.

The scope of this document is to provide general and generic requirements for the test method using cyclohexane (C6H12) as a tracer to determine the mechanical leakage rate of iodine trap. This reproducible method can support nuclear operators to compare the result with reference values given in safety reports.

Unlike the method of radioactive methyl iodide described in ISO/DIS 16659-2, the cyclohexane field test method covered in this document does not directly give a decontamination factor for the iodine trap, but only the iodine trap performance information of an integrity test, and the interpretation of whether the performance of the iodine trap meets the requirements needs to be combined with the results of the radioiodine efficiency test of the adsorbent in the iodine trap.

Due to the use of the environmentally friendly test reagent of low-toxicity in the field tests, the method is mainly suitable for ventilation systems of those habitable spaces (e.g. main control rooms of nuclear power plants), and performance test of a single iodine adsorber before its delivery and acceptance. In addition, the method can also be used for iodine traps with activated carbon sampling canister (e.g. Deep Bed Iodine Adsorber Type III and Drawer Iodine Adsorber Type II).

Read draft and comment

Comment on proposal

Required form fields are indicated by an asterisk (*) character.


Please email further comments to: debbie.stead@bsigroup.com

Follow standard

You are now following this standard. Weekly digest emails will be sent to update you on the following activities:

You can manage your follow preferences from your Account. Please check your mailbox junk folder if you don't receive the weekly email.

Unfollow standard

You have successfully unsubscribed from weekly updates for this standard.

Error